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Abstract—Utilizing the dyadic Green’s functions (DGF’s) de-
rived in Part I of this paper, the input impedance of a coaxial
probe located inside a semi-infinite rectangular waveguide has
been generally formulated. The electromagnetic DGF’s for a rect-
angular cavity with a dielectric load are also obtained from the
general expressions given in Part I. Using the full-wave analysis,
a dielectric-loaded rectangular cavity is further considered and
the input impedance is specified. To improve the computational
accuracy, an alternative form of electric DGF’s of the second
kind is developed and expressed in terms of the guided-wave
eigenvalues for the rectangular loaded cavity. The probe-input
reactance and the phase of the reflection coefficients are computed
using the conventional form of electric DGF and the alternative
form of magnetic DGF. Data are obtained from experiments
performed on a dielectric-loaded cavity and compared with the
numerical results. Agreement of the theoretical and experimental
results confirms the applicability of the theoretical analysis given
in this paper.

I. INTRODUCTION

T HE INPUT impedance of a probe is of particular im-
portance to the microwave component designers [1]–[4].

For the determination of the input impedance of a coaxial
probe inside a rectangular waveguide, the Method of Moments
(MoM’s) and the dyadic Green’s function (DGF) technique
are usually applied [5]–[8]. Some simple geometries such as
an empty rectangular cavity [7], [9], and [10], an empty rec-
tangular semi-infinite waveguide [5], and a dielectric-loaded
semi-infinite waveguide [6] have been dealt with using these
methods. However, the conventional form of the magnetic
DGF consists of the singularity and the step-functional sign
change which reduce the computational speed for a given
accuracy or introduce error for a given number of iteration [9].
It has recently been found [10] that the use of an alternative
form of the magnetic DGF can improve computational speed
and accuracy. Also, it is helpful for system design if further
investigations on the input impedance of a coaxial probe
located in complex structures are conducted.

This paper aims at determining the input impedance of a
coaxial probe in a semi-infinite rectangular waveguide with
multiple loadsby using the electric DGF’s presented in [8] and
an alternative form of magnetic DGF’s. The input impedance
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Fig. 1. (a) Side view and (b) top view of the excited probe. The equivalent
surface current flowing circularly over the disk plate forms the magnetic
source.

of a probe inside a dielectric-loaded rectangular cavity, as
an application, has been analyzed. The problem of the input
impedance of a probe located in a rectangular waveguide with
multiple loads is first stated in Section II. A practical case
of a dielectric-loaded rectangular cavity, which can be con-
sidered as a specific structure of the semi-infinite rectangular
waveguide with a dielectric and a conducting loads, is then
discussed in Section III. Electromagnetic DGF’s of the first
kind for the semi-infinite rectangular waveguide are directly
reduced in Appendix A from the general formulae given in
[8]. For ease of numerical implementation, the alternative
form of the electric DGF of the second kind is represented
in Appendix B. Probe-input impedance is computed using
the MoM’s and the alternative DGF form. To verify the
theoretical analysis, comparison is made between experimental
data and computed results. Reasonably good agreements of
the theoretical and experimental results are found from the
comparison in Section III.

II. STATEMENT AND FORMULATION OF THE PROBLEM

To formulate the problem, the structure of the waveguide
and the representation of the source probe are described first.
The calculation of the probe-input impedance using the MoM’s
is given subsequently.

A. Source Representation and Waveguide Structure

In this problem, a semi-infinite rectangular waveguide with
multiple loads is excited by a coaxial probe of characteristic
impedance (in experiments, a 50- impedance is chosen).
See Fig. 1 for geometry of the probe.
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Fig. 2. Geometry of the semi-infinite rectangular waveguide with multiple
loads.

The probe itself is usually considered as an electric source.
A sinusoidal filamentary current distribution is assumed along
the entire length of the probe situated at the center. The
first edition of [1], as well as [2], [11], and [12], used
this assumption to investigate the probe radiation inside a
rectangular waveguide. Due to the electromagnetic scattering
from the cylindrical post inside the waveguide, the probe
surface current is not uniformly distributed around the probe.
Therefore, the probe cannot be accurately represented by just
a centered filamentary current. Instead, the metallic probe can
be represented as a set of-directed current filaments situated
along the circumference of the probe. In [5], [13], and [14]
eight equivalent current filaments representation are used to
replace the conducting-post surface and effectively modified
the previous single post with a central current.

When a signal is fed into the coaxial cable, a known
magnetic frill current distribution at the base of the coaxial-
to-rectangular feed induces an unknown current distribution
in the presence of the waveguide walls. The circular current
flow on the disk-shaped aperture is equivalent to a magnetic
source, as shown in Fig. 1. Thus, for the probe considered (see
Fig. 1), the eight equivalent current filaments form the electric-
current distribution of -direction and the equivalent
current flow along the surface of the frill current aperture
forms the magnetic current distribution of both - and
-directions. Both [6] and [7] included the effects from the frill

current due to the probe located in the waveguide and cavity
and also derived the expression of the DGF’s in component
form, respectively. In this paper, the same representation of
the probe will be employed in our calculation.

B. Field Equations and Dyadic Green’s Functions (DGF’s)

The electromagnetic fields excited by the probe in the semi-
infinite rectangular waveguide with multiple loads as shown
in Fig. 2 are governed by Maxwell’s equations. Instead of
solving the vector–wave equations directly, the authors solve
for the fields using DGF’s. In component form, the-directed
electric fields and at the field point due to the th
filamentary electric source and the frill source
at the probe base are expressed by

(1a)

(1b)

It can be seen from (1) that the electric field can be obtained
if the electromagnetic DGF’s [i.e., and ]
and the electromagnetic sources [i.e., and ] are
known.

In fact, the -directed electric-current distribution as
a function of and can be expressed as

(2a)

and

(2b)

where is the coaxial input voltage at , is the
height of the rectangular waveguide, are the unknown
coefficients, are the following expansion (or testing)
functions [5] used in the MoM’s:

(3a)

and is a function defined by

elsewhere.
(3b)

Inside (3), the parameter is chosen such that the orthog-
onality condition is satisfied by the testing functions, i.e.,

Therefore, may be expressed as

(4)

The electric DGF’s for the semi-infinite rectangular wave-
guide with multiple loads have been formulated earlier in
[8] and can be directly used in the computation of the
input impedance. To compare with the experimental data, the
input impedance of the probe located in a dielectric-loaded
rectangular cavity will be computed. Prior to this, the DGF’s
in each cavity region divided by the dielectric are needed.
By reducing the generalized formulas given in [8], the DGF’s
in each region of the dielectric-loaded cavity are formulated
in Appendix A. The rectangular cavity with a single load is
formed on the assumption that the last region of a three-layers
is a conductor. These DGF’s are constructed in terms of the
vector–wave functions with the well-known piloting vector,
and thus are referred to as the conventional form.
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The magnetic DGF is also formulated in Appendix A by
simplifying the generalized DGF’s given in [8]. However, it
is not recommended for use in our calculation here. This is
because the conventional form of the DGF is not convenient to
use. Due to the step-functional change in the-direction and a
Bessel-functional variation in the-direction at the magnetic-
source point, the commercially available double integration
subroutine has to take these transitions into account and this
reduces the computational speed for a given accuracy or
introduces errors for a given number of iteration. Evidence
of improvement resulting from the use of the alternative form
of DGF has been obtained previously by [10] which compared
the computational results with the measured input impedance
of the probe in a rectangular cavity. The alternative form
of the DGF with -directed source discontinuity is easier to
implement as only the source region of interest is
needed. This alternative magnetic DGF has been derived in
Appendix B using the discrete eigenvalues of the TE and TM
modes and their corresponding eigenfunctions.

C. The Moment Method and Probe-Input Impedance

Once the DGF’s are developed, the electric- and magnetic-
current distributions can be determined using the boundary
conditions over the surface of the conducting metallic probe.
Thus, the boundary conditions atpoints on the probe surface
give:

(5)

Multiplying (5) by the testing equations (i.e., first and
then ) and then integrating it throughout the entire length of
the probe result in the following matrix equation:

(6a)

or

(6b)

where is an 8 8 matrix determined after substitution of
(1a) in (5), is an 8 1 matrix that consists of elements
representing unknown coefficients of the current ,
and is also an 8 1 matrix consisting of the elements .

Once the matrix equation is solved, the coefficients of the
current distribution and hence the current distribution will be
obtained. With the known currents, the input impedance and
the reflection coefficients are determined by

(7)

(8)

where is the characteristic impedance (50in the exper-
iment). It is noticed that there are several definitions of the
input impedance [1], [5], and [15]—this paper adopted the
definition given in [5] and [6].

III. I NPUT IMPEDANCE OF A PROBE IN A

DIELECTRIC-LOADED CAVITY

Following the procedure introduced in the last section, the
input impedance can be computed. Prior to this, it is necessary
to compute the discrete eigenvalues for TE and TM modes
inside the first region. The eigenvalues of the TE and TM
modes in the second region can be determined from the
characteristic equations in (B-3), but the computation is not
so easy and straightforward.

A. Discrete Eigenvalues of TE and TM Modes

To gain an insight into the details, the complete eigenvalues
of the TE and TM modes at frequencies of 8.8, 10, and
11.44 GHz in the first region have been obtained. These
values are generated using commercially available software
MATHEMATICA where the Jacobian method is employed. Care
must be exercised because it is easy to miss out or to repeat
some of the discrete eigenvalues and . Since these
eigenvalues for the given TE and TM modes correspond to
the eigenvalue for an empty cavity, has been used
to check whether there is any missing eigenvalue. While
the FindRoot procedure in MATHEMATICA is tabulated for
different values, a proper starting value that varies with the
operating frequency and cavity dimensionmust be chosen
for systematic generation of these eigenvalues.

In the calculation, the dielectric used is Teflon, the relative
permittivity of which is a complex quantity and a function of
frequency. Therefore, the corresponding value at its respective
frequency point must be considered in the computation. The
permittivity of the piece of Teflon used has been measured
using the dielectric-probe application kit in conjunction with
the HP8510 network analyzer.

B. Numerical and Experimental Results

To verify our theoretical analysis, measurements of the
input impedance of a coaxial probe-excited loaded cavity
have been made. The experimental data of the normalized
reactance and the phase of reflection coefficients are shown
in Fig. 3(a) and (b) against the frequency. The cross-section
parameters of the rectangular cavity used are: mm
and mm. The -directional dimensions of the cavity
are: mm, mm, and mm where
the thickness of the dielectric medium is mm. The
height, inner radius, and outer radius of the metallic probe
are: mm, mm and mm,
respectively. The dielectric used to fill up part of the cavity
is Teflon.

The experimental data are also compared with the computed
results. The comparison made in Fig. 3(a) and (b) shows
reasonably good agreement between theory and experiment,
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(a)

(b)

Fig. 3. Comparison of measured data (“experimental” curve) and numerical
results (“theoretical” curve). (a) Reactance of the probe and (b) phase of
reflection coefficient. The thicknessz2 � z1 of the dielectric is 5 mm.

particularly at the frequency of interest ranging from 10 to
12 GHz.

C. Discussions: Numerical Interpolations

As shown in Fig. 3(a) and (b), a kink is found around the
frequency of 10 GHz. Detailed debugging checks through
the program showed that this kink arises because double
integration is poorly converged as well as the ill-condition
of the matrix inside the procedure of the MoM’s. Similar
phenomena were supported by [16]. Such numerical problems
have been found near the resonant frequencies. This problem
near resonance is due to the creation of an approximate
impedance matrix , which has the wrong resonant frequency
(i.e., it is not consistent with that of the radiation problem).
This suggests that the calculated input reactance and the phase-
of-reflection coefficient around the frequency of 10 GHz are
inaccurate. The condition number is used to show the
computation errors. Singular value decomposition (SVD) [16]
could be used instead of Gaussian elimination to improve the
results at the kinks.

With the same parameters used in Fig. 3, thecondition
number of the matrix for the case of the dielectric-loaded
rectangular cavity has been plotted in Fig. 4 as a function of
frequency. From this figure, the authors can see that the
number becomes very large around the region of the kinks and
that two possible kinks exist, one at about 8.5 GHz and the
other at about 10 GHz.

Fig. 4. L1 condition number of the fields inside a dielectric-loaded rectan-
gular cavity as a function of frequency. The same parameters of Fig. 4 have
been used in the computation.

It is found that when the matrix becomes singular at a
particular frequency, the kink occurs around that frequency.
Physically, the range around the frequency corresponds to
the region where the modes in the rectangular cavity change
from the series to the parallel resonance or vice versa. The
singularity of the matrix is independent of the form of DGF’s
used, although the conventional and alternative forms of
DGF’s affect the elements of or the coefficients of .
It is also found from the computation that these kinks always
exist unless a suitable numerical interpolation is assumed in
the procedure of the MoM’s. A frequency shift is also found
in the phase plot between the experimental and theoretical
results. This suggests an electrical delay error in the measure-
ment. Therefore, the extra electrical delay that describes the
transfer of the calibration point to the reference plane must be
determined accurately.

IV. CONCLUSION

This paper has presented a full-wave analysis of the input
impedance of a coaxial probe located inside a semi-infinite
rectangular waveguide with multiple loads. The MoM’s to-
gether with DGF technique is applied in the analysis. To extend
the general analysis to possible applications, a rectangular
cavity with a dielectric load excited by the coaxial probe is
investigated. While the conventional form of electromagnetic
DGF is obtained by reducing the general results given in [8],
an alternative form of the magnetic DGF is formulated using
the discrete eigenvalues. The input reactance of the probe and
the phase-of-reflection coefficient are computed and compared
with the measured data. Reasonably good agreement between
theory and experiment is found. The authors also computed
the results by using the conventional and alternative forms
of magnetic DGF’s and compared them with the experimental
data. It is found from the comparison that a combination of the
conventional electric DGF for the electric filamentary source
and the alternative form of the magnetic DGF for the magnetic
aperture source can provide better accuracy for analyzing a
coaxial probe excitation inside a rectangular cavity loaded with
a dielectric layer. It is found that kinks exist around certain
frequencies when the MoM’s matrix becomes singular.
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Fig. 5. Geometry of a rectangular loaded cavity.

APPENDIX A
ELECTROMAGNETIC DGF’S FOR A

RECTANGULAR LOADED CAVITY

Electric and magnetic types of DGF’s for a semi-infinite
rectangular waveguide have been developed by [8] and their
coefficients have been generally derived. A rectangular cavity
with a load shown in Fig. 5 can be considered as a semi-infinite
waveguide with a dielectric load and a conducting load. By
assuming the third region (in [8]) of the waveguide filled with a
perfect conductor (see Fig. 2 for the configuration), the DGF’s
can be reduced from the general formulas.

A. Representation of DGF’s

When a rectangular cavity is filled with a dielectric slab at
one end, the space in the cavity is divided into two regions,
namely, Region I and Region II. As shown in Fig. 5, the
source is located in the first Region I and so is the field point.
To simplify the expression, the symbols ( or ) and
( ) denote the region numbers of the field and source points,
respectively.

The principle of scattering superposition gives the DGF

which is the sum of the unbounded (with respect
to -direction) dyadic and the scattering DGF

contributed by the interfaces perpendicular to
the -direction. In mathematical form, it is

(A-1)

where denotes Kronecker delta.
The unbounded electric and magnetic types of DGF’s

consisting of the singularity and the principal
value is given by

(A-2)

where ( for or , and 0 otherwise) denotes the
Kronecker delta and and represents the
principal value.

The scattering DGF can be presented as
follows [17] and [18] for the first region,

(A-3a)

and for the second region,

(A-3b)

where the symbol appearing as the superscript and the
subscript denotes the region total number of the waveguide.
The coordinates , , and have been shown in Fig. 5.
The coefficients , , , and

are to be determined from the boundary condi-
tions.

B. Scattering Coefficients of DGF’s

To simplify the scattering coefficients of the DGF’s, the
following reflection and transmission coefficients are utilized:

(A-4a)

(A-4b)
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(A-4c)

(A-4d)

where ( ) denotes the permittivity for the
electric type of DGF and the permeability for the magnetic
type of DGF, in the th region.

According to the formulation given in [8], the general
matrices are defined in (A-5) and (A-6) as shown at the bottom
of the page, as for the specific case considered, the layer
number is equal to 3, the interface orderis equal to 1 and
2, and the intermediate is equal to 1. Thus, the intermediate
matrix defined in [8] can be written as

(A-7)

where

(A-8a)

(A-8b)

The element of the matrix can be expressed as follows:

(A-9a)

(A-9b)

(A-9c)

(A-9d)

So far, the intermediates are still valid for a semi-infinite rect-
angular waveguide with two loads. However, the configuration
of interest is a rectangular cavity with a dielectric load, i.e.,
a semi-infinite rectangular waveguide with a dielectric load
(the second region) and a perfectly conducting load (the third
region). Thus, we have , so that

(A-10a)

(A-10b)

(A-10c)

For the sake of simplicity, we let

(A-11)

Thus, the intermediate reduces to

(A-12a)

or

(A-12b)

Finally, the scattering coefficients can be further expressed as

(A-13a)

(A-13b)

(A-13c)

(A-5)

and

(A-6)
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(A-13d)

where is given by (A-12a) or (A-12b). From (A-
13c), the symmetry of the DGF with respect to the field and
source points is shown.

APPENDIX B
ALTERNATIVE MAGNETIC DGF FOR A

RECTANGULAR LOADED CAVITY

A. Magnetic DGF for a Loaded Cavity

Considering a rectangular cavity of two regions(
). The principle of separation of variables gives the scalar

eigenfunctions of TE (or mode) and TM (or mode) modes
as follows: for or ,

(B-1a)

and for or ,

(B-1b)
The eigenvalues determined by the boundary conditions at the
walls and for both TE and TM modes are
given by

(B-2a)

(B-2b)

The eigenvalues can be determined from the boundary condi-
tions at the walls and the interface satisfied
by the TE (even) and TM (odd) modes. The conditions can be
written in terms of characteristic equations given by

(B-3a)

(B-3b)

and the continuity equation of the propagation constant given
by

(B-3c)

It is obvious that the eigenvalues are functions of the mode
number . Thus, the vector–wave functions of TE and TM
modes can be expressed for regionas follows:

(B-4a)

(B-4b)

Furthermore, the scattering DGF’s of the first and second
kinds can be represented as

1) for Region I, as :

(B-5a)

and as :

(B-5b)

where the eigenvalues and are functions of the mode
number , an exact expression has been obtained by summing
up the series in terms of the eigenvalues[19], and the
orthogonality of the vector–wave functions have been utilized
to obtained the following intermediates:

(B-6a)

(B-6b)

and 2) for Region II, as :

(B-7a)
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and as :

(B-7b)

where

(B-8a)

(B-8b)

where

for even mode
for odd mode.

(B-9)

B. Magnetic DGF for an Empty Cavity

Obviously, the above DGF’s can be reduced to that for the
empty rectangular cavity. In fact, for an empty rectangular
cavity, we may assume that and/or . For both
cases, the DGF for Region I reduces to that for the empty
cavity, that is, the electromagnetic DGF’s, and , for
a rectangular cavity can be given for by

(B-10)

where

(B-11a)

(B-11b)

(B-11c)

The vector–wave functions are constructed in terms of the
scalar eigenfunctions obtained from the separation of variables
and given by

(B-12)

As compared with those in [10] where only magnetic DGF
was derived, the representation here includes both electric and
magnetic types of DGF’s. In [10] there was a typographic
error. The correct form of the eigenvalue in
[10] should be the one given in (B-12).
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