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Input Impedance of a Probe-Excited Semi-Infinite
Rectangular Waveguide with Arbitrary Multilayered
Loads: Part [I—A Full-Wave Analysis
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Abstract—Utilizing the dyadic Green’s functions (DGF'’s) de-
rived in Part | of this paper, the input impedance of a coaxial
probe located inside a semi-infinite rectangular waveguide has
been generally formulated. The electromagnetic DGF's for a rect-
angular cavity with a dielectric load are also obtained from the
general expressions given in Part |. Using the full-wave analysis,
a dielectric-loaded rectangular cavity is further considered and
the input impedance i_s specified. To im_prove the computational St 1y~
accuracy, an alternative form of electric DGF's of the second :
kind is developed and expressed in terms of the guided-wave (a) (b)
eigenvalues for the rectangular loaded cavity. The probe-input
reactance and the phase of the reflection coefficients are computed
using the conventional form of electric DGF and the alternative
form of magnetic DGF. Data are obtained from experiments
performed on a dielectric-loaded cavity and compared with the
numﬁncal rfesultsthAgreelmelgyl_ct)f thfetrtlhetcr)lrencaz_l ar|1d exlpenmgntal of a probe inside a dielectric-loaded rectangular cavity, as
irﬁstl;ﬂs ;c;r[;érrr'ns € applicability ot the theorefical analysis given o, application, has been analyzed. The problem of the input

impedance of a probe located in a rectangular waveguide with

multiple loads is first stated in Section Il. A practical case
of a dielectric-loaded rectangular cavity, which can be con-

HE INPUT impedance of a probe is of particular imsidered as a specific structure of the semi-infinite rectangular

portance to the microwave component designers [1]-[4}aveguide with a dielectric and a conducting loads, is then
For the determination of the input impedance of a coaxidiscussed in Section Ill. Electromagnetic DGF’s of the first
probe inside a rectangular waveguide, the Method of Momenisid for the semi-infinite rectangular waveguide are directly
(MoM's) and the dyadic Green’s function (DGF) techniqueeduced in Appendix A from the general formulae given in
are usually applied [5]-[8]. Some simple geometries such 8. For ease of numerical implementation, the alternative
an empty rectangular cavity [7], [9], and [10], an empty redorm of the electric DGF of the second kind is represented
tangular semi-infinite waveguide [5], and a dielectric-loadegl Appendix B. Probe-input impedance is computed using
semi-infinite waveguide [6] have been dealt with using thesee MoM’s and the alternative DGF form. To verify the
methods. However, the conventional form of the magnetineoretical analysis, comparison is made between experimental
DGF consists of the singularity and the step-functional sigfata and computed results. Reasonably good agreements of
change which reduce the computational speed for a givgfe theoretical and experimental results are found from the
accuracy or introduce error for a given number of iteration [9tomparison in Section I
It has recently been found [10] that the use of an alternative
form of the magnetic DGF can improve computational speed
and accuracy. Also, it is helpful for system design if further
investigations on the input impedance of a coaxial probe To formulate the problem, the structure of the waveguide
located in complex structures are conducted. and the representation of the source probe are described first.

This paper aims at determining the input impedance of Td1€ calculation of the probe-input impedance using the MoM'’s
coaxial probe in a semi-infinite rectangular waveguide witl§ given subsequently.
multiple loadsby using the electric DGF's presented in [8] and
an alternative form of magnetic DGF’s. The input impedanok. Source Representation and Waveguide Structure

Fig. 1. (a) Side view and (b) top view of the excited probe. The equivalent
surface current flowing circularly over the disk plate forms the magnetic
source.

I. INTRODUCTION

Il. STATEMENT AND FORMULATION OF THE PROBLEM
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It can be seen from (1) that the electric field can be obtained

Yy if the electromagnetic DGF'’s [i.eG.(r, ') and G, (r, )]
zZ, | 2, 24, e Zys  Zna Iy and the electromagnetic sources [i£.(r") and M ,(+')] are
: : known.
< In fact, theg-directed electric-current distributiof. (r') as
oe a function ofy’ and ¢’ can be expressed as
2
: Ty @) =D jar wtar(y )pi (@) (2a)
1 2 3 e N3 N2 NI N =
Fig. 2. Geometry of the semi-infinite rectangular waveguide with muItipIélnd v
loads. M, (') = - (—cos ¢ +sing’z) (20)
t
The probe itself is usually considered as an electric source. ' In < ;u )
A sinusoidal filamentary current distribution is assumed along -
the entire length of the probe situated at the center. Thderel; is the coaxial input voltage af = —b4/2, b is the

first edition of [1], as well as [2], [11], and [12], usedheight of the rectangular waveguidg, . are the unknown
this assumption to investigate the probe radiation insidecaefficients,t,; (y') are the following expansion (or testing)
rectangular waveguide. Due to the electromagnetic scatterfiugctions [5] used in the MoM’s:
from the cylindrical post inside the waveguide, the probe b
surface current is not uniformly distributed around the probe. sin {k{h - <y + —)} }, s'=1
. 2

Therefore, the probe cannot be accurately represented by just

: : to(y) = b (3a)
a centered filamentary current. Instead, the metallic probe car _ _ v

N . . tily) +all—cos <klh—y+

be represented as a setgpllirected current filaments situated ) 2
along the circumference of the probe. In [5], [13], and [14] 5 =2
eight equivalent current filaments representation are usedaifd p, (¢') is a function defined by
replace the conducting-post surface and effectively modified

the previous _single_ post W_ith a central current. N A <Pl < P+ A
When a signal is fed into the coaxial cable, a known pir(¢') = 2 2 (3b)
magnetic frill current distribution at the base of the coaxial- 0, elsewhere.

to-rectangular feed induces an unknown current distribution
in the presence of the waveguide walls. The circular current
flow on the disk-shaped aperture is equivalent to a magne%

Inside (3), the parameter is chosen such that the orthog-
ality condition is satisfied by the testing functions, i.e.,

source, as shown in Fig. 1. Thus, for the probe considered (see —b/24h
Fig. 1), the eight equivalent current filaments form the electric- / ti(y)t2(y) dy = 0.
current distributionJ(r') of g-direction and the equivalent —b/2

current flow along the surface of the frill current aperturgherefore, may be expressed as
forms the magnetic current distributidvf (') of both z- and
z-directions. Both [6] and [7] included the effects from the frill « =

current due to the probe located in the waveguide and cavity —b/2+h

and also derived the expression of the DGF's in component /b ) t(y)ti(y) dy

form, respectively. In this paper, the same representation of — —b/2rh b/ .
the probe will be employed in our calculation. tl(y)<1 — cos {k{h _ <y+ g)} }) dy
B. Field Equations and Dyadic Green’s Functions (DGF’s) 2 4)

The electromagnetic fields excited by the probe in the semi- ) S
infinite rectangular waveguide with multiple loads as shown The electric DGF’s for the semi-infinite rectangular wave-
in Fig. 2 are governed by Maxwell's equations. Instead @uide with multiple loads have been formulated earlier in
solving the vector-wave equations directly, the authors soll and can be directly used in the computation of the
for the fields using DGF's. In component form, thadirected input impedance. To compare with the experimental data, the
electric fie|dSE;i . andEji at the field point due to thei’th input impedance of the probe located in a dielectric-loaded
fllamentary elec£r|c Sourcde(,r/) and the frill Sourcd\ls(,r/) rectangular CaV|ty will be Computed Prior to thIS, the DGF's

at the probe base are expressed by in each cavity region divided by the dielectric are needed.
. By reducing the generalized formulas given in [8], the DGF's

Ej o =iwp /// (Ge(r, )]y Jey(r') AV’ (1a) in each region of the dielectric-loaded cavity are formulated
v in Appendix A. The rectangular cavity with a single load is

El =- /// [V x G, 7)]ye Mo (v') dV formed on the assumption that the last region of a three-layers

v is a conductor. These DGF’s are constructed in terms of the

- /// [V % Gpu(r, )], M,.(r')dV’. (1b) Vector-wave functions with the well-known piloting vectar
Vv and thus are referred to as the conventional form.
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The magnetic DGF is also formulated in Appendix A bwhereZ, is the characteristic impedance (80in the exper-
simplifying the generalized DGF’s given in [8]. However, iiment). It is noticed that there are several definitions of the
is not recommended for use in our calculation here. This iigput impedance [1], [5], and [15]—this paper adopted the
because the conventional form of the DGF is not convenientdefinition given in [5] and [6].
use. Due to the step-functional change in thgirection and a
Bessel-functional variation in the-direction at the magnetic-
source point, the commercially available double integration IIl. INPUT IMPEDANCE OF A PROBE IN A
subroutine has to take these transitions into account and this DIELECTRIC-LOADED CAVITY
reduces the computational speed for a given accuracy otFollowing the procedure introduced in the last section, the
introduces errors for a given number of iteration. Evidendaput impedance can be computed. Prior to this, it is necessary
of improvement resulting from the use of the alternative formo compute the discrete eigenvalues for TE and TM modes
of DGF has been obtained previously by [10] which comparéaside the first region. The eigenvalues of the TE and TM
the computational results with the measured input impedano@des in the second region can be determined from the
of the probe in a rectangular cavity. The alternative formharacteristic equations in (B-3), but the computation is not
of the DGF withg-directed source discontinuity is easier t®o easy and straightforward.
implement as only the source region of intergst> ¢ is
needed. This alternative magnetic DGF has been derived in
Appendix B using the discrete eigenvalues of the TE and Tt Discrete Eigenvalues of TE and TM Modes

modes and their corresponding eigenfunctions. To gain an insight into the details, the complete eigenvalues
of the TE and TM modes at frequencies of 8.8, 10, and
C. The Moment Method and Probe-Input Impedance 11.44 GHz in the first region have been obtained. These

Once the DGF'’s are developed, the electric- and magnetY@lues are generated using commercially available software

current distributions can be determined using the boundzMﬁTHEMAT'CA yvhere the Jacc_)b_lan method IS employed. Care
conditions over the surface of the conducting metallic prob@.uSt be exercised because it is easy to miss out or to repeat

Thus, the boundary conditions At points on the probe surfaceS0Me Of the discrete eigenvalugs, and 7,,. Since these
give: eigenvalues for the given TE and TM modes correspond to

the eigenvalue for an empty cavityyr/c has been used

8 J . . to check whether there is any missing eigenvalue. While
> Ej . +E,=0 i=1234 (5) the FindRoot procedure in MTHEMATICA is tabulated for
i'=1 differentn values, a proper starting value that varies with the

Multiplying (5) by the testing equations (i.e., first and ©Operating frequency and cavity dimensiormust be chosen

thent,) and then integrating it throughout the entire length dPr Systematic generation of these eigenvalues. _
the probe result in the following matrix equation: In the calculation, the dielectric used is Teflon, the relative

permittivity ¢, of which is a complex quantity and a function of
L4 , —b/2+h . frequency. Therefore, the corresponding value at its respective
S>3 Zusoion =— D EL ) dy - dered -

s, 871/ s s yi frequency point must be considered in the computation. The
permittivity of the piece of Teflon used has been measured
using the dielectric-probe application kit in conjunction with
the HP8510 network analyzer.

=1 5'=1 —b/2
=V (6a)

or

Zj=V (6b) . _
B. Numerical and Experimental Results

(1a) in (5),j is an 8x 1 matrix that consists of elementsiynyt impedance of a coaxial probe-excited loaded cavity
representing unknown coefficients of the currely(y/, ¢), have been made. The experimental data of the normalized
andV is also an 8x 1 matrix consisting of the elements;. reactance and the phase of reflection coefficients are shown
Once the matrix equation is solved, the coefficients of thg Fig. 3(a) and (b) against the frequentyThe cross-section
current distribution and hence the current distribution will bgarameters of the rectangular cavity used are: 22.9 mm

obtained. With the known currents, the input impedance agfqy = 10.2 mm. Thez-directional dimensions of the cavity

the reflection coefficients are determined by are:zo = —31.9 mm, z; = 20 mm, andz, = 25 mm where
Vo the thickness of the dielectric mediumais— z; = 5 mm. The
Zin =7 height, inner radius, and outer radius of the metallic probe
o Vi are:h = 87 mm, r, = 0.65 mm andr.y, = 2.05 mm,
= (7)  respectively. The dielectric used to fill up part of the cavity
/ Jy <__, 7r>n de is Teflon.
0 2 The experimental data are also compared with the computed

FIM (8) results. The comparison made in Fig. 3(a) and (b) shows
Zin + Zo reasonably good agreement between theory and experiment,
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Fig. 4. L1 condition number of the fields inside a dielectric-loaded rectan-
gular cavity as a function of frequency. The same parameters of Fig. 4 have
been used in the computation.
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50 ¢ It is found that when thé& matrix becomes singular at a
particular frequency, the kink occurs around that frequency.
Physically, the range around the frequency corresponds to
the region where the modes in the rectangular cavity change
from the series to the parallel resonance or vice versa. The
singularity of the matrix is independent of the form of DGF’s
85 5 95 10 105 11 15 1 usedy, although the conventional and alte_rr_lanve fo;ms of
Frequency (f), GHz DGF's affect the elements oV or the coefficients oft,;.
(b) It is also found from the computation that these kinks always
. . . __exist unless a suitable numerical interpolation is assumed in
Fig. 3. Comparison of measured dataxperimentdl curve) and numerical , [
results (theoretical curve). (a) Reactance of the probe and (b) phase c;he procedure of the MoM's. A frequency shift is also found
reflection coefficient. The thickness — =1 of the dielectric is 5 mm. in the phase plot between the experimental and theoretical
results. This suggests an electrical delay error in the measure-
ment. Therefore, the extra electrical delay that describes the
fansfer of the calibration point to the reference plane must be
determined accurately.

Phase, degrees
=

50 |
-100
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particularly at the frequency of interest ranging from 10 t
12 GHz.

C. Discussions: Numerical Interpolations

As shown in Fig. 3(a) and (b), a kink is found around the IV. CONCLUSION

frequency of 10 GHz. Detailed debugging checks through This paper has presented a full-wave analysis of the input
the program showed that this kink arises because doubigedance of a coaxial probe located inside a semi-infinite
integration is poorly converged as well as the ill-conditionectangular waveguide with multiple loads. The MoM’s to-
of the matrixZ inside the procedure of the MoM’s. Similargether with DGF technique is applied in the analysis. To extend
phenomena were supported by [16]. Such numerical problethe general analysis to possible applications, a rectangular
have been found near the resonant frequencies. This probleswity with a dielectric load excited by the coaxial probe is
near resonance is due to the creation of an approximateestigated. While the conventional form of electromagnetic
impedance matriZ, which has the wrong resonant frequencipGF is obtained by reducing the general results given in [8],
(i.e., it is not consistent with that of the radiation problem)n alternative form of the magnetic DGF is formulated using
This suggests that the calculated input reactance and the phése-discrete eigenvalues. The input reactance of the probe and
of-reflection coefficient around the frequency of 10 GHz arnhe phase-of-reflection coefficient are computed and compared
inaccurate. TheL1 condition number is used to show thewith the measured data. Reasonably good agreement between
computation errors. Singular value decomposition (SVD) [1@8heory and experiment is found. The authors also computed
could be used instead of Gaussian elimination to improve thie results by using the conventional and alternative forms
results at the kinks. of magnetic DGF’s and compared them with the experimental

With the same parameters used in Fig. 3, tHecondition data. It is found from the comparison that a combination of the
number of theZ matrix for the case of the dielectric-loadedconventional electric DGF for the electric filamentary source
rectangular cavity has been plotted in Fig. 4 as a function ahd the alternative form of the magnetic DGF for the magnetic
frequency. From this figure, the authors can see thatlthe aperture source can provide better accuracy for analyzing a
number becomes very large around the region of the kinks atwhxial probe excitation inside a rectangular cavity loaded with
that two possible kinks exist, one at about 8.5 GHz and tlaedielectric layer. It is found that kinks exist around certain
other at about 10 GHz. frequencies when the MoM’s matriz becomes singular.
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whereéy (=1 for m or n = 0, and 0 otherwise) denotes the
Kronecker delta and3 = k3 — k? and PVjs represents the
principal value.

The scattering DGFG: s/*)(r, ') can be presented as
follows [17] and [18] for the first region,

oo

. r oo —6
RO T S Pl

2
n=0 m=0 7o kc

. {Mf;rnn (70) [agr];ZLTEM;‘;rnn (70)

Fig. 5. Geometry of a rectangular loaded cavity. + /35(;121TEMlgmn(_’YO)]
+ Nomn (30} [abin N (0)
APPENDIX A (11)TM pgs
e N, (—
ELECTROMAGNETIC DGF'S FOR A + Bemn - Nepn( %),]E
RECTANGULAR LOADED CAVITY +M gmn(—%)[a/g(r}lQT M,,.(70)
Electric and magnetic types of DGF’s for a semi-infinite +/3g(7}lln)TEM’emn(_%)]
rectangular waveguide have been developed by [8] and their ’ ’ /(11)TM rpr
ici i i N e (=0)cts Nep(0)
coefficients have been generally derived. A rectangular cavity + Nemn emn Zmn
with a load shown in Fig. 5 can be considered as a semi-infinite + /jégl:bL)Tl\qumn(_%)]}’

waveguide with a dielectric load and a conducting load. By
assuming the third region (in [8]) of the waveguide filled with a
perfect conductor (see Fig. 2 for the configuration), the DGF's (A-3a)
can be reduced from the general formulas.

(20 <2< 21320 < 2 < 21)

and for the second region,

A. Representation of DGF's @%} (r, 1) = Lb Sy 2 —kfzo

When a rectangular cavity is filled with a dielectric slab at ab =0 m=o TOfe
one end, the space in the cavity is divided into two regions, {Mgmn(w)[agiJ;ZLTEMan(,yO)
namely, Region | and Region Il. As shown in Fig. 5, the (21)TE /° i
source is located in the first Region | and so is the field point. +mn M (=0)]
To simplify the expression, the symboJs(=1 or 2) and s +Ngmn(’m)[agillZLTl\qN'omn(’yo)
(=1) denote the region numbers of the field and source points, (21)TM 7/ ’ )
respectively. + Bemn - Neopn(=0)]

The principle of scattering superposition gives the DGF +Memn(—w)[afﬁ},?TEM’emn(fyo)
@gl)(r, ') which is the sum of the unbounded (with respect 3’(021)TEM’ ’ ’
to z-direction) dyadicGe o(r, ) and the scattering DGF P gmn(=70)]
G- sV(r, +') contributed by the interfaces perpendicular to + N‘grnn(_’72)[0/3(31172T1\’1Nén1n(70)
the z-direction. In mathematical form, it is +/3£(31171)T1\V1Némn(_%)]}7

G ) =Colr )+ G ) (D) (1 <z <im0 < 2 <2)

(A-3b)
where 6; denotes Kronecker delta. ) .
The unbounded electric and magnetic types of DGF¥Nere the symbolV appearing as the superscript and the

G. o(r, ') consisting of the singularity and the principaISUbscript denotes the region total number of the waveguide.
value is given by The coordinatesy, z;, and z; have been shown in Fig. 5.

The coefficientsy S TE TM U DTE TM & (FDTETM 50

o AA& L B /(fl)TE7 M smn o.rnn v emn .
G- o(r, ') __*2 (23 ) + PVsGe o(r, 1) {foﬁg are to be determined from the boundary condi-
2356(r— 1) i o= = 2— 8
- k2 + ab Z Z Yok2 B. Scattering Coefficients of DGF's
n=0 m=0 ¢
Mepn(70) M., (=0 To simplify the scattering coefficients of the DGF's, the

following reflection and transmission coefficients are utilized:
+Ngnln(70)Nérnn(_70)7 z 2z 4 9

Mgmn(_'YO)M/ (7o) RITE _ PV~ 5105 (A-4a)

smn e =
+Nzmn(=70)Nepn(10), 2 <2 S N T AL

. k2 — k2
(—00 < 2 < 00; —00 < 2/ < 00) RITM _ RfHLVIHLNy — RV R (A-4b)

(A-2) Cprrvk ek
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TITE —1 4 RIIE A-4c R 1 LTE, TM
cmn +k cmn ( ) [Fgrnn]?? - TlTE: TMTQTE, TM [Rgrnn
FTM _ RfRf+1 FTM ) smn smn
7;;7"" - m(l + Rf;m" ) (A-4d) i RETE’ TM ,—i(vi+v2)z1+i(vz+7vs)22
+ e~ =)z —i(72 —"/z)Zz]' (A-9d)

whereg; (f = 1, 2, 3) denotes the permittivity; for the

electric type of DGF and the permeabiljia; for the magnetic . _ . . o
type of DGF, in thefth region. So far, the intermediates are still valid for a semi-infinite rect-

According to the formulation given in [8], the general""”gu'ar wayeguide with two IoaQS. prever, the gonfigurqtion
matrices are defined in (A-5) and (A-6) as shown at the bottdph interest is a rectangular cavity with a dielectric load, i.e.,
of the page, as for the specific case considered, the lafepemi-infinite rectangular waveguide with a dielectric load
numberX is equal to 3, the interface ordéis equal to 1 and (the second region) and a perfectly conducting load (the third
2, and the intermediat& is equal to 1. Thus, the intermediatgegion). Thus, we havez — oo, £3 — 400 SO that
matrix defined in [8] can be written as

(1) (2)TE, TMq (1) TE, TM R;Tn% o= - (A-10a)
anln:[Tgnln ’ ][Tgrnn ’ ] (A_7) Ci’YSZZ — 0 (A'lOb)
where R —s (A-10c)
T(2TE, TM _ 1 For the sake of simplicity, we let
cmn - TQTE, T™
omn TE,TM _ _—ivsz 1TE, TM.2TE, TM
ei('yz—'yg)zz Rzzz];]; Tl\qe—i("/zﬂg)zz D =e P lzj‘irnn lzérnn
[RT Digons | ieivars | AL Lo ™ (E) i lae ™),
(A-8a) (A-11)
MmTE,T™ 1
Ternn T ITE ™ Thus, the intermediat®™® ™ reduces to
"|: emn—r2)z1 ’REEEL’ Tl\'Ie—i("/H-"/z)Zl:| pDTE,T™M _ (:I:)(—F—)R},TE’ TMe—i("rl+"/2)Z1+i"/2Z2+i"/1Z0
’Rézl% ™M ji(ityz)z1 e~ r2)21 " + e—iln—)z =iz tinizo (:F)(_,__)Ré:—;% T™
( i ) . ei("/1+"/2)Z1 —ivY222 —%71%0
The element of the matriFSQm can be expressed as follows: — n—me)ativz—inz (A-12a)
1 or
1 7 — z / . .
[Fi(WZn]ll = TlTE, TMTQTE, T™ [C (=)= DTEIM = 21{— SH1 [’Yl(zl - Zo) + 72(22 - 751)]
cmn cmn 1ITE, TM _.
ir—1)% | RLTE, TMp2TE, TM (FE)Remn’ sin[n(z1 = 20)
‘ o emn cmn + y2(21 — 22)]}- (A-12b)
. 61(714"‘/2)41—1("/2-1"‘/3)42] (A_ga)
[F(l) iz = 1 [RlTE, ™ Finally, the scattering coefficients can be further expressed as
smnll2 = _ITE, TM,2TE, TM L/¥Ysmn , o o
IZEmn lzj‘imn O‘S}JLTE’ ™ _ [_RL};EL% TM jive (22 —41)(:F)(+_)6—z'y2 (22 —41)]
. e—i("h-l-"/z)zl-l-i("/z —v3)z2 + Rngn% ™ e—im (21420)
. e—i("rl—"rz)m —i("/2+"/3)Z2] (A-9b) : DTE, TM (A-13a)
)2 = : [RZTE T B = [T ) (o) Ry T e )
sronl2t = TR TR0 T g gnter=so)
i —2) biCats)z | QLTE TM FDTETN (A-13D)
. ei(“h-l-“/z)zl—i(“/z —“rz)zz] (A_gc) O/g(r}zlrzTE’ B = /ji(;]i’leE7 B (A'13C)
K K
PO _ {[Fénir)L]ll [Fi(nszr)L 12 }
’ [FES 1 (SN
_ [TEN—l)TE, TM] [TEN—Q)TE, TM] o [TEK-H)TE, TM] [TEK)TE, TM] (A-5)
and
i(ve—yes1)ze CTE, TM ,—i(vedyet1)ze
gomem™_ 1 e Remn ™ e (A-6)
smn - TfnTn]?’ ™ ’szlET{ TM i(yetves1)ze e~ (ve—ver1)ze :
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Bl = R M e G ) () (e ) Ngmn[k‘gy; 15e2]
emztzo) _ COS (AT COS ,,; . sin
" TDTE, TM (A-13d) B k_zv XV { sin ( a ) sin Feo¥) o (6% |-

where DTE:T™ s given by (A-12a) or (A-12b). From (A- (B-4b)

13c), the symmetry of the DGF with respect to the field and
source points is shown. Furthermore, the scattering DGF’s of the first and second
kinds can be represented as

1) for Region I, asy > ¢

APPENDIX B
ALTERNATIVE MAGNETIC DGF FOR A —~(11) (2-69)(2-89)
Gy -y BothEot)
RECTANGULAR LOADED CAVITY m ac
. . 1
A. Magnetic DGF for a Loaded Cavity . {5 Mgmn[kilg(y —12); Me12]

Considering a rectangular cavity of two regioAs(¢ =

1 / . /
1, 2). The principle of separation of variables gives the scalar e"m[k oW = )5 7]

eigenfunctions of TE (oe mode) and TM (ow mode) modes + —Ngmn (kL (y = I); 1017]
as follows: for0 < z < dorf =1, Ce
1 "rnn[kl ( ' ll)7 77"12/]} (B_Sa)
cos /MTTI\ cos /PTYY\ sin e
Vomn () = sin ( a )sin (T) cos (mz)  (B-13)
and asy < v
and ford < z < corf = 2, @gn):_z (2-8)2-6)
" m, n ac
Cos (MTL cos (PTYY sin _ 1
emn(112) = sin ( a )sin ( b )cos (e = 2)). '{FMimn[k‘}g(y_ll); ne17]
(B-1b) ’
The eigenvalues determined by the boundary conditions at the e,,m[kl (' —1l2); ne1”]
walls z = 0, « andy = 0, b for both TE and TM modes are
given by + EN emnlkeg(y — 1); 7212
ke ="7 0 m=0,1,2, - (B-2a) Ny (0 = 12); 77:12’]} (B-5b)
a
ky = pr p=0,1,2, -, (B-2b) where the eigenvalues; andr:.» are functions of the mode
b numbern, an exact expression has been obtained by summing

the series in terms of the eigenvalueq19], and the

The elger;]valueﬁ can ge detedrmrllne_d frofm the bg““d?“fY <(:jo thogonality of the vector-wave functions have been utilized
tions at the walls: = 0, c and the interfacer = d satisfied , ohained the following intermediates:

by the TE éven) and TM ¢6dd) modes. The conditions can be

2
written in terms of characteristic equations given by B — \/k2 _ (m) — (nee)? (=12 (B-6a)
M tan (1) =" tan (Neat) (B-3a) C. = (E)Q + (ki )2 kL sin [ki c}
Tlel Tle2 ¢ a o9 o9 o9
Mol No2 :
d = — d = 2 <
2 tan (ad) = =7 tan(nat)  (8-3b) . [1 _sin <_W>} (B-6b)
20y
and the continuity equation of the propagation constant givand 2) for Region Il, ag; > ¥/:
by gen 1 Z (2-6)(2=18))
k% - 77?1 = k% - 77:?2 (B_3C) ” ac m,n ac
It is obvious that the eigenvalues are functions of the mode {TM [k2,(y = 12); ne2(c — 2)]
numbern. Thus, the vector-wave functions of TE and TM Ce
modes can be expressed for regibas follows: e,,m[kl (v = 11); me1”']
To

Nornnk —l s e -z
M e[k 3 11c12] e? gty = ta); ot = 2)

—V x { () k) S )| (B-4a) N[k (1 = 1); nglz’]} (B-7a)

sin a sin °

e
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— 2-89)(2-6%)
gy __ N (2-6, n
T]\l
{ C. My [k2,(y — 11); nealc — 2)]
Mlgrnn[k%g(y/ - 12)7 77“’12]
Ton
+ 60 N‘grnn[kgg(y - ll)7 7722(6 - Z)]
'Nfgrnn [kglg(y/ - 12)7 77312/]} (B'7b)
where
015 (1)
Ty = “n (B-8a)
P2 (ne2t)
sin
ky cos (Ugld)
Ton = sin (B-8b)
k2 cos (77§2t)
where
o for even mode i
©= {e, for odd mode. (B-9)

B. Magnetic DGF for an Empty Cavity
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The vector-wave functions are constructed in terms of the
scalar eigenfunctions obtained from the separation of variables
and given by

Cos (mwx) Cos
sin sin

(B-12)

z/jirnn =

().

As compared with those in [10] where only magnetic DGF
was derived, the representation here includes both electric and
magnetic types of DGF's. In [10] there was a typographic
error. The correct form of the eigenvalug, . (z, y, z) in
[10] should be the one given in (B-12). °

a
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